Introduction #

Understanding power factor theory is essential, but applying calculations to real-world industrial scenarios makes the concepts practical. This guide provides detailed, step-by-step power factor calculations for various industrial applications, from simple motor loads to complex mixed facilities. Each example includes actual measurements, correction calculations, and equipment selection.

Example 1: Single Motor Load #

Scenario #

Industrial motor:

  • Power: 50 HP
  • Voltage: 480V, 3-phase
  • Current: 65 A (measured)
  • Power factor: Unknown

Calculate power factor and correction requirements.

Step 1: Calculate Apparent Power (kVA) #

kVA = √3 × V × I ÷ 1000
kVA = 1.732 × 480 × 65 ÷ 1000 = 54.0 kVA

Step 2: Calculate Real Power (kW) #

Motor output: 50 HP
Efficiency: 92%
Input power: 50 × 0.746 ÷ 0.92 = 40.5 kW

Step 3: Calculate Power Factor #

PF = kW ÷ kVA
PF = 40.5 ÷ 54.0 = 0.75

Step 4: Calculate Reactive Power (kVAR) #

kVAR = √(kVA² - kW²)
kVAR = √(54.0² - 40.5²) = √(2916 - 1640.25) = 35.7 kVAR

Step 5: Calculate Correction Requirements #

Target PF: 0.95

Required kVA at 0.95 PF = 40.5 ÷ 0.95 = 42.6 kVA
Required kVAR at 0.95 PF = √(42.6² - 40.5²) = 13.3 kVAR
Required correction = 35.7 - 13.3 = 22.4 kVAR

Select: 25 kVAR capacitor

Results Summary #

Parameter Value
Real Power (kW) 40.5 kW
Apparent Power (kVA) 54.0 kVA
Reactive Power (kVAR) 35.7 kVAR
Current Power Factor 0.75
Required Correction 22.4 kVAR
Selected Capacitor 25 kVAR

Example 2: Mixed Industrial Load #

Scenario #

Manufacturing facility:

  • Motors: 200 kW at 0.85 PF
  • Heaters: 80 kW at 1.0 PF
  • Lighting: 30 kW at 1.0 PF
  • Office equipment: 20 kW at 0.90 PF

Calculate total power factor and correction.

Step 1: Calculate kVA for Each Load #

Motors:
kW = 200, PF = 0.85
kVA = 200 ÷ 0.85 = 235.3 kVA
kVAR = √(235.3² - 200²) = 123.9 kVAR

Heaters:
kW = 80, PF = 1.0
kVA = 80 ÷ 1.0 = 80.0 kVA
kVAR = 0 kVAR

Lighting:
kW = 30, PF = 1.0
kVA = 30 ÷ 1.0 = 30.0 kVA
kVAR = 0 kVAR

Office:
kW = 20, PF = 0.90
kVA = 20 ÷ 0.90 = 22.2 kVA
kVAR = √(22.2² - 20²) = 9.7 kVAR

Step 2: Calculate Totals #

Total kW = 200 + 80 + 30 + 20 = 330 kW
Total kVA = 235.3 + 80.0 + 30.0 + 22.2 = 367.5 kVA
Total kVAR = 123.9 + 0 + 0 + 9.7 = 133.6 kVAR

Step 3: Calculate Overall Power Factor #

Overall PF = Total kW ÷ Total kVA
PF = 330 ÷ 367.5 = 0.898

Step 4: Calculate Correction to 0.95 PF #

Target kVA = 330 ÷ 0.95 = 347.4 kVA
Target kVAR = √(347.4² - 330²) = 108.2 kVAR
Required correction = 133.6 - 108.2 = 25.4 kVAR

Select: 25 kVAR capacitor bank

Step 5: Verify After Correction #

New kVAR = 133.6 - 25 = 108.6 kVAR
New kVA = √(330² + 108.6²) = 347.5 kVA
New PF = 330 ÷ 347.5 = 0.950 ✓

Results Summary #

Parameter Before After Improvement
kW 330 330 -
kVA 367.5 347.5 -5.4%
kVAR 133.6 108.6 -18.7%
Power Factor 0.898 0.950 +5.8%
Current (480V) 442.3 A 418.3 A -5.4%

Example 3: Power Factor Measurement #

Scenario #

Facility with unknown power factor. Measurements:

  • Voltage: 480V (line-to-line)
  • Current: 250 A
  • Real power: 180 kW (measured with power meter)

Calculate power factor.

Step 1: Calculate Apparent Power #

kVA = √3 × V × I ÷ 1000
kVA = 1.732 × 480 × 250 ÷ 1000 = 207.8 kVA

Step 2: Calculate Power Factor #

PF = kW ÷ kVA
PF = 180 ÷ 207.8 = 0.866

Step 3: Calculate Reactive Power #

kVAR = √(kVA² - kW²)
kVAR = √(207.8² - 180²) = √(43,156 - 32,400) = 103.7 kVAR

Results #

  • Power Factor: 0.866 (needs improvement)
  • Reactive Power: 103.7 kVAR
  • Apparent Power: 207.8 kVA

Example 4: Capacitor Sizing for Multiple Motors #

Scenario #

Facility with three large motors:

  • Motor 1: 100 HP, 0.85 PF
  • Motor 2: 75 HP, 0.88 PF
  • Motor 3: 50 HP, 0.87 PF

All motors: 92% efficiency, 480V

Calculate individual and total correction.

Step 1: Calculate Motor Inputs #

Motor 1:
Output: 100 HP = 74.6 kW
Input: 74.6 ÷ 0.92 = 81.1 kW
kVA = 81.1 ÷ 0.85 = 95.4 kVA
kVAR = √(95.4² - 81.1²) = 50.3 kVAR

Motor 2:
Output: 75 HP = 55.95 kW
Input: 55.95 ÷ 0.92 = 60.8 kW
kVA = 60.8 ÷ 0.88 = 69.1 kVA
kVAR = √(69.1² - 60.8²) = 32.4 kVAR

Motor 3:
Output: 50 HP = 37.3 kW
Input: 37.3 ÷ 0.92 = 40.5 kW
kVA = 40.5 ÷ 0.87 = 46.6 kVA
kVAR = √(46.6² - 40.5²) = 22.8 kVAR

Step 2: Calculate Totals #

Total kW = 81.1 + 60.8 + 40.5 = 182.4 kW
Total kVA = 95.4 + 69.1 + 46.6 = 211.1 kVA
Total kVAR = 50.3 + 32.4 + 22.8 = 105.5 kVAR
Overall PF = 182.4 ÷ 211.1 = 0.864

Step 3: Calculate Correction Options #

Option 1: Centralized Correction

Target PF: 0.95
Required kVAR: 105.5 - (√((182.4÷0.95)² - 182.4²)) = 105.5 - 60.0 = 45.5 kVAR
Select: 50 kVAR capacitor bank at main service

Option 2: Individual Motor Correction

Motor 1: Correct to 0.95 PF
Required: 50.3 - (√((81.1÷0.95)² - 81.1²)) = 50.3 - 26.7 = 23.6 kVAR
Select: 25 kVAR at Motor 1

Motor 2: Correct to 0.95 PF
Required: 32.4 - (√((60.8÷0.95)² - 60.8²)) = 32.4 - 20.0 = 12.4 kVAR
Select: 12.5 kVAR at Motor 2

Motor 3: Correct to 0.95 PF
Required: 22.8 - (√((40.5÷0.95)² - 40.5²)) = 22.8 - 13.3 = 9.5 kVAR
Select: 10 kVAR at Motor 3

Total: 25 + 12.5 + 10 = 47.5 kVAR

Comparison #

Option Capacitor Size Cost Benefits
Centralized 50 kVAR Lower Simple, one location
Individual 47.5 kVAR Higher Reduces feeder currents

Example 5: Power Factor Improvement ROI #

Scenario #

Existing facility:

  • Current load: 500 kW at 0.75 PF
  • Average demand: 666.7 kVA
  • Utility demand charge: $15/kVA/month
  • Power factor penalty: $500/month (PF < 0.90)

Calculate savings from improving to 0.95 PF.

Step 1: Calculate Current Costs #

Monthly kVA demand: 666.7 kVA
Monthly demand charge: 666.7 × $15 = $10,000
Monthly PF penalty: $500
Total monthly: $10,500
Annual: $126,000

Step 2: Calculate After Correction #

Target PF: 0.95
New kVA = 500 ÷ 0.95 = 526.3 kVA
Monthly demand charge: 526.3 × $15 = $7,895
Monthly PF penalty: $0 (PF > 0.90)
Total monthly: $7,895
Annual: $94,740

Step 3: Calculate Savings #

Monthly savings: $10,500 - $7,895 = $2,605
Annual savings: $31,260

Step 4: Calculate Correction Cost #

Required correction: 210.7 kVAR
Capacitor bank (225 kVAR): $8,000
Installation: $3,000
Engineering: $2,000
Total: $13,000

Step 5: Calculate ROI #

Payback period: $13,000 ÷ $2,605 = 5.0 months
First year ROI: ($31,260 - $13,000) ÷ $13,000 × 100 = 140%

Results Summary #

Metric Value
Annual Savings $31,260
Installation Cost $13,000
Payback Period 5.0 months
First Year ROI 140%

Example 6: Variable Load Power Factor Correction #

Scenario #

Facility with highly variable load:

  • Minimum: 200 kW at 0.80 PF = 250 kVA
  • Average: 400 kW at 0.82 PF = 487.8 kVA
  • Peak: 600 kW at 0.78 PF = 769.2 kVA

Determine correction strategy.

Step 1: Analyze Load Profile #

Minimum: 200 kW, 250 kVA, 150 kVAR
Average: 400 kW, 487.8 kVA, 286.3 kVAR
Peak: 600 kW, 769.2 kVA, 468.7 kVAR

Step 2: Calculate Correction Options #

Option 1: Fixed Capacitors (Average Load)

Target: 0.95 PF at average load
Required: 286.3 - (√((400÷0.95)² - 400²)) = 286.3 - 131.6 = 154.7 kVAR
Select: 150 kVAR fixed

At Peak Load:

With 150 kVAR correction:
kVAR = 468.7 - 150 = 318.7 kVAR
kVA = √(600² + 318.7²) = 678.9 kVA
PF = 600 ÷ 678.9 = 0.884 (still low)

Option 2: Automatic/Switched Capacitors

Install: 200 kVAR automatic bank
Stages: 50, 50, 50, 50 kVAR
Adjusts based on load
Maintains 0.95 PF across range

Step 3: Compare Options #

Option Cost Performance Best For
Fixed Lower Good at average Constant loads
Automatic Higher Excellent all loads Variable loads

Recommendation: Automatic capacitors for variable load

Frequently Asked Questions #

Q1: How do I measure power factor? #

A:

  • Use power quality meter
  • Measure kW, kVA, and PF directly
  • Or calculate: PF = kW ÷ kVA

Q2: What's the formula for kVAR calculation? #

A:

kVAR = √(kVA² - kW²)

Or from power factor:

kVAR = kW × tan(arccos(PF))

Q3: How do I size capacitors for power factor correction? #

A:

  1. Calculate current kVAR
  2. Calculate target kVAR (at desired PF)
  3. Required correction = Current - Target
  4. Select next standard size

Q4: Should I use fixed or automatic capacitors? #

A:

  • Fixed: Constant loads, lower cost
  • Automatic: Variable loads, better performance, higher cost

Q5: What's the typical power factor for industrial facilities? #

A:

  • Good: 0.95-0.98 (with correction)
  • Typical: 0.85-0.90 (mixed loads)
  • Poor: 0.75-0.85 (many motors, no correction)

Q6: How much can I save with power factor correction? #

A: Savings depend on:

  • Current power factor
  • Utility rates
  • Demand charges
  • Penalty structure

Typical: 10-30% of demand charges.

Conclusion #

These examples demonstrate practical power factor calculations for industrial applications. Key principles:

  • Measure accurately (kW, kVA, current)
  • Calculate correctly (include all loads, use proper formulas)
  • Size appropriately (account for load variations)
  • Verify results (check calculations, test after installation)
  • Monitor continuously (track performance, adjust as needed)

Use the PF & kW/kVA Converter to quickly calculate power factor and correction requirements for your facility.